概览与核心价值KEDA 通过事件源驱动扩缩容,适合异步处理与突发流量场景。本文以队列长度与 Prometheus 指标为例,验证扩缩容行为与稳定性参数。ScaledObject 示例(RabbitMQ 队列长度)apiVersion: keda.sh/v1alpha1

kind: ScaledObject

metadata:

name: worker-scaledobject

spec:

scaleTargetRef:

name: worker

minReplicaCount: 1

maxReplicaCount: 20

cooldownPeriod: 300

pollingInterval: 30

triggers:

- type: rabbitmq

metadata:

queueName: jobs

host: amqp://user:[email protected]:5672/

queueLength: "100"

Prometheus 指标触发示例(每秒请求数)apiVersion: keda.sh/v1alpha1

kind: ScaledObject

metadata:

name: api-scaledobject

spec:

scaleTargetRef:

name: api

cooldownPeriod: 180

pollingInterval: 30

triggers:

- type: prometheus

metadata:

serverAddress: http://prometheus.default.svc.cluster.local:9090

metricName: http_requests_per_second

threshold: "200"

query: sum(rate(http_requests_total[1m]))

参数与验证环境:`Kubernetes v1.28`、`KEDA v2.12+`。验证点:触发延迟:在 `pollingInterval` 内,常见 30–60s冷却周期:`cooldownPeriod` 控制缩容抖动,建议 ≥ 180s队列清空:在负载高峰期副本数增长,消费速率提升,尾部稳定缩容最佳实践根据事件特性设置合理的 `pollingInterval` 与 `cooldownPeriod`结合 HPA 行为参数,避免双重控制冲突监控 Queue 指标与应用吞吐,校准阈值结论KEDA 为事件驱动场景提供灵活的扩缩容能力。通过阈值与周期参数的合理配置,可在高峰与低谷期间保持稳定与成本可控。

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部