概述目标:通过金丝雀分步流量与指标分析自动判定发布是否继续或回滚,降低风险并标准化发布流程。适用:核心服务的逐步上线与数据驱动决策。核心与实战Rollout定义(金丝雀与分析):apiVersion: argoproj.io/v1alpha1 kind: Rollout metadata: name: api namespace: prod spec: replicas: 4 strategy: canary: steps: - setWeight: 10 - pause: { duration: 300 } - analysis: templates: - templateName: error-rate args: - name: service value: api - setWeight: 50 - pause: { duration: 300 } - analysis: templates: - templateName: latency-p95 args: - name: service value: api selector: matchLabels: { app: api } template: metadata: labels: { app: api } spec: containers: - name: api image: repo/api:2.0.0 ports: - containerPort: 8080 AnalysisTemplate(Prometheus):apiVersion: argoproj.io/v1alpha1 kind: AnalysisTemplate metadata: name: error-rate namespace: prod spec: args: - name: service metrics: - name: error-rate provider: prometheus: address: http://prometheus:9090 query: sum(rate(http_requests_total{service="{{args.service}}",code=~"5.."}[5m])) / sum(rate(http_requests_total{service="{{args.service}}"}[5m])) failureCondition: result[0] > 0.05 --- apiVersion: argoproj.io/v1alpha1 kind: AnalysisTemplate metadata: name: latency-p95 namespace: prod spec: args: - name: service metrics: - name: latency-p95 provider: prometheus: address: http://prometheus:9090 query: histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket{service="{{args.service}}"}[5m])) by (le)) failureCondition: result[0] > 0.8 示例应用与推进:kubectl -n prod apply -f rollout.yaml kubectl -n prod apply -f analysis-templates.yaml kubectl -n prod argo rollouts get rollout api kubectl -n prod argo rollouts promote api 验证与监控状态与决策:`argo rollouts get`查看当前步与分析结果;失败自动回滚并记录原因。指标采集:确保Prometheus中目标指标有效;观察错误率与P95趋势。流量控制:配合Service Mesh或Ingress分流确保权重生效。常见误区分析失败条件过严或过宽导致误判;需根据SLO设定合理阈值。指标查询不稳定;需平滑查询并保障数据新鲜度。未集成分流组件导致权重不生效;Rollouts需与Gateway/Mesh配合。结语Argo Rollouts通过数据驱动金丝雀发布与自动分析回滚,显著提升发布质量与可控性,适合关键服务上线流程。

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部