评估

AI 安全与评估体系(2025)

AI 安全与评估体系(2025)AI 系统的安全与质量需要制度化治理。本文从指标、攻防与审计三个方面展开。一、评估指标准确性与一致性:针对任务定义标注集与评分标准。幻觉控制:回答需可追溯来源;无法回答时明确退路。鲁棒性:对对抗样本与异常输入进行压力评估。二、数据泄露与防护最小权限:隔离敏感数据,严格

AI 评估数据集构建与标注流程(2025)

AI 评估数据集构建与标注流程(2025)评估数据集决定了评估的可信度,需要规范采样与标注与质量流程。一、采样与覆盖采样:覆盖主流与长尾场景,控制偏差。分层:按类别与难度分层,提升代表性。二、标注与质检标注规范:统一标签与说明,降低歧义。质检:双人标注与仲裁,提升质量与一致性。三、评估与闭环指标:准

RAG 评估与可复现实验流程(2025)

RAG 评估与可复现实验流程(2025)RAG 的优化需数据驱动与可复现。本文给出评估与回放流程。一、评估集与采样分层采样:覆盖主流与长尾问题。版本管理:评估集与数据源版本化,记录变更。二、指标与记录指标:召回率/准确率/引用正确率与覆盖度。记录:检索片段与生成输入输出日志,支持回放。三、回放与对照

Rolldown 生产评估与兼容性清单

引言Rolldown 目标以 Rust 性能统一 Vite 的依赖预打包与生产构建;生产采用需围绕产物一致与插件兼容进行系统评估。评估维度(已验证)集成现状:官方集成页面说明 Rolldown 统一 esbuild 与 Rollup 的目标与路线。来源:Vite 官方 Rolldown Integr