概述物化视图在写入明细表时同步聚合到汇总表,结合AggregatingMergeTree与TTL策略在后台进行合并与清理。通过一致性检查与查询对比验证聚合正确性。关键实践与参数预聚合: 使用 `countState/sumState` 在视图端聚合合并与Finalize: 查询时使用 `finalizeAggregation`TTL策略: 明细表或汇总表按时间清理与重组索引与分区: 根据查询维度设计排序与分区键示例/配置/实现CREATE TABLE logs (
ts DateTime,
app String,
status UInt16,
size UInt64
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(ts)
ORDER BY (app, ts)
TTL ts + INTERVAL 90 DAY;
CREATE TABLE logs_agg (
day Date,
app String,
count AggregateFunction(count),
sum_size AggregateFunction(sum, UInt64)
) ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(day)
ORDER BY (app, day);
CREATE MATERIALIZED VIEW mv_logs_agg TO logs_agg AS
SELECT toDate(ts) AS day, app,
countState() AS count,
sumState(size) AS sum_size
FROM logs GROUP BY day, app;
SELECT day, app,
finalizeAggregation(count) AS cnt,
finalizeAggregation(sum_size) AS total
FROM logs_agg
WHERE day >= today() - 7
ORDER BY day, app;
验证一致性: 对比汇总结果与在明细表直接聚合的结果一致性能: 汇总表查询耗时显著低于明细聚合TTL生效: 观察过期分区自动清理, 存储占用下降合并稳定: 后台合并任务正常, 无拥塞注意事项物化视图基于写入触发, 导入旧数据需重新回放或批量聚合TTL与合并任务在高负载下需监控资源占用排序与分区键影响巨大, 需谨慎设计对非加总类指标使用合适的聚合函数

发表评论 取消回复