概述Argo Rollouts通过分阶段权重与分析模板实现金丝雀发布, 根据指标阈值自动推进或回滚。可进行蓝绿对比与灰度实验, 提升发布安全性与可观测性。关键实践与参数权重推进: `setWeight` 按 10/30/60/100 分阶段分析模板: 使用Prometheus查询 `error_rate` 与 `latency`自动回滚: 指标超阈值时 `abort` 回滚可观测: 记录每阶段结果与事件示例/配置/实现apiVersion: argoproj.io/v1alpha1 kind: AnalysisTemplate metadata: name: at-metrics spec: metrics: - name: error-rate successCondition: result < 0.02 failureCondition: result >= 0.02 provider: prometheus: address: http://prom:9090 query: | sum(rate(http_requests_total{job="app", status=~"5.."}[5m])) / sum(rate(http_requests_total{job="app"}[5m])) - name: p95-latency successCondition: result < 500 failureCondition: result >= 500 provider: prometheus: address: http://prom:9090 query: histogram_quantile(0.95, sum by(le) (rate(http_request_duration_seconds_bucket{job="app"}[5m]))) --- apiVersion: argoproj.io/v1alpha1 kind: Rollout metadata: name: app spec: replicas: 6 strategy: canary: steps: - setWeight: 10 - analysis: { templates: [{ templateName: at-metrics }] } - setWeight: 30 - analysis: { templates: [{ templateName: at-metrics }] } - setWeight: 60 - analysis: { templates: [{ templateName: at-metrics }] } - setWeight: 100 abort: at: { step: 2 } selector: matchLabels: { app: app } template: metadata: labels: { app: app } spec: containers: - name: app image: app:v2 ports: [{ containerPort: 8080 }] 验证阶段推进: 每阶段权重生效并分析指标通过才继续自动回滚: 指标超阈值时触发回滚至稳定版本指标对比: 灰度与基准版本在错误率与延迟上的差异可视化事件日志: 记录分析结果与发布决策注意事项指标阈值需结合历史与业务目标设定灰度期间确保路由与缓存策略不影响指标真实性与网关或Ingress限流协同避免雪崩在低流量服务上谨慎评估指标波动

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部