概述Argo Workflows 在 Kubernetes 上编排DAG与并行任务。本文提供并行策略与资源治理、重试与退避、模板与Artifact复用,以及验证与监控方法。并行与资源(已验证)并行策略:`parallelism` 与队列;资源配额:限制CPU/内存与节点亲和;亲和与反亲和:避免热点与资源争用。重试与退避`retryStrategy` 与 `backoff` 指数退避;失败分支与补偿任务;模板与Artifact可复用模板:统一步骤;Artifact 存储:S3/HTTP;示例(片段)apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata: { name: batch-pipeline }
spec:
entrypoint: main
parallelism: 5
templates:
- name: main
dag:
tasks:
- name: step1
template: run
- name: step2
template: run
dependencies: [step1]
- name: run
retryStrategy:
limit: 3
backoff: { duration: "1m", factor: 2 }
container:
image: alpine:3.19
command: ["sh","-c","echo run"]
验证与监控指标:成功率、运行时长、队列等待与资源占用;回归:变更前后并行与退避效果;常见误区并行过高造成资源抢占与失败;无退避导致重试风暴;结语以并行策略与资源治理为基础,结合重试退避与模板复用,并以指标验证,Argo Workflows 能在批处理场景高效稳定运行。

发表评论 取消回复